合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 泡泡消煙原理,不同質量分數堿劑發泡液表面張力的測試結果
> 十二烷基硫酸鈉、水楊酸丁酯流動驅動自推進界面張力和表面流速測量
> 脂肪醇聚醚磺酸鹽的界面性能、耐溫耐鹽性能對比
> 超低軌衛星環境效應研究也會用到超微量天平?
> W/O型Pickering乳液油水間的界面張力對乳液穩定性的影響
> 表面張力儀應用案例:芳綸纖維復合材料浸潤性測量原理與步驟
> 基于界面張力弛豫法考察羥基取代烷基苯磺酸鹽的界面擴張流變性質(二)
> 基于天然植物油的酰胺胺氧化合物的合成表征及表面性質——實驗程序
> 表面張力儀試驗原理和方法解析
> 超低界面張力復配表面活性劑用于渤海X油田水驅后的“挖潛提采”(一)
推薦新聞Info
-
> Wilhelmy吊板法測試溫度、鋁元素和稀土元素對鋅浴表面張力的影響
> 基于表面張力系數等模擬液滴撞擊熱壁面的動力學行為(二)
> 基于表面張力系數等模擬液滴撞擊熱壁面的動力學行為(一)
> 10種常用表面活性劑水溶液的表面張力測定、泡沫的產生和測試(三)
> 10種常用表面活性劑水溶液的表面張力測定、泡沫的產生和測試(二)
> 10種常用表面活性劑水溶液的表面張力測定、泡沫的產生和測試(一)
> 雙鏈乳糖酰胺季銨鹽表面活性劑物化性能、應用性能及復配性能研究
> ABA型聚醚改性有機硅表面活性劑在不同溶劑中的泡沫性能的相關性
> 什么是超微量天平?超微量天平用在什么地方
> 表面能和表面張力關系,如何降低表面張力
不動桿菌菌株XH-2產生物表面活性劑發酵條件、性質、成分研究(一)
來源:化學與生物工程 瀏覽 390 次 發布時間:2024-12-23
摘要:以低成本的泔水油和豆粕為碳、氮源,發酵培養不動桿菌菌株XH-2(Acinetobacter sp.XH-2)生產生物表面活性劑。以表面張力及排油圈直徑為考察指標,對菌株XH-2產生物表面活性劑的發酵條件進行單因素優化,并研究了該生物表面活性劑的穩定性。結果表明,菌株XH-2在最優培養基(泔水油3%、豆粕5%、氯化鎂2%、磷酸氫二鉀6%、磷酸二氫鉀3.8%、三氯化鐵0.5%、氯化鈉2%和初始pH值6.0)中發酵培養2 d后,所產的生物表面活性劑的臨界膠束濃度為200 mg·L-1,其使發酵液的表面張力由73.01 mN·m-1降至25.25 mN·m-1,具有廣泛的溫度、pH值和鹽度適應性,初步的成分分析結果表明該生物表面活性劑可能為糖脂類。
生物表面活性劑(biosurfactants)是微生物(主要有假單胞菌屬、芽孢桿菌屬和酵母菌等)在代謝過程中產生的一類集親水基和疏水基于一體的兩親化合物,具有一定的界面活性;主要包括糖脂、磷脂、脂肽、脂肪酸、多糖-脂類復合物和中性脂等,已知的生物表面活性劑以糖脂為主。與化學表面活性劑相比,生物表面活性劑具有降低溶液表面張力、增加泡沫、低毒或無毒、可生物降解、無污染、生物相容性良好、乳化性高、表面活性高以及可引入化學法難以合成的化學基團等優點。因此,生物表面活性劑已在石油、洗滌、醫藥、化妝品等領域得到廣泛的應用,尤其在修復被石油污染的土壤、提高原油采收率等方面。然而,通過微生物合成生物表面活性劑因受產量低、成本高等因素的制約,尚未能實現真正的商業化生產,尋找并利用營養豐富的廉價原料作為發酵基質逐漸成為研究的熱點。開發利用工農業廢料、非食用油、餐飲廢油生產生物表面活性劑,不但可緩解環境壓力,變廢為寶,還可降低生產成本。
作者在此以低成本的泔水油、豆粕作為發酵培養基的碳、氮源,對本實驗室篩選的不動桿菌菌株XH-2(Acinetobactersp.XH-2)產生物表面活性劑的發酵條件進行優化,并對菌株所產的生物表面活性劑的性質及成分進行研究,擬為后續的應用開發奠定理論基礎。
1實驗
1.1培養基與儀器
種子培養基:酵母提取物0.5%、蛋白胨1%、氯化鈉1%。
基礎培養基:氯化鎂2%、磷酸氫二鉀6%、磷酸二氫鉀3.8%、三氯化鐵0.5%、氯化銨5%。
振蕩培養箱;分光光度計;全自動表面張力儀;傅立葉變換紅外光譜儀。
1.2生物表面活性劑發酵條件的優化
1.2.1生物表面活性劑表面活性的測定
排油圈直徑的測定:參照Chandankere等的方法,略有改進。取一培養皿,加入60mL蒸餾水、5mL液體石蠟和少量蘇丹Ⅲ溶液,形成均勻的油膜。在油膜中心垂直滴加1mL離心后的發酵液上清液,油膜被擠向四周形成一個圓圈,測量其直徑。排油圈直徑與生物表面活性劑含量成正比。
表面張力的測定:將發酵液于10 000r·min-1離心20min,取上清液利用圓環法測定表面張力。
1.2.2碳源對菌株產生物表面活性劑的影響
在基礎培養基中分別添加淀粉、乳清粉、蔗糖、葡萄糖、玉米芯、柴油、甘油、防腐油、泔水油,濃度均為2%;確定最適碳源后,設置碳源的濃度梯度為1%、2%、3%、4%、5%;等量接種菌株XH-2于30℃、160r·min-1條件下搖瓶發酵培養2d,取離心后的發酵液上清液測定排油圈直徑及表面張力,確定菌株XH-2發酵培養基的最佳碳源及其濃度。
1.2.3氮源對菌株產生物表面活性劑的影響
在添加優化碳源的基礎培養基中,分別以濃度為2%的蛋白胨、豆粕、酵母提取物(酵提)、硝酸鈉、氯化銨、硫酸銨、尿素為氮源替換原有的氯化銨;確定最適氮源后,設置氮源的濃度梯度為0.5%、1%、2%、3%、5%;等量接種菌株XH-2于30℃、160r·min-1條件下搖瓶發酵培養2d,取離心后的發酵液上清液測定排油圈直徑及表面張力,確定菌株XH-2發酵培養基的最適氮源及其濃度。
1.2.4接種量對菌株產生物表面活性劑的影響
取優化碳、氮源后的基礎培養基,將菌株XH-2接種量(V/V,下同)分別設置為1%、2%、4%、6%、8%,在30℃、160r·min-1條件下搖瓶發酵2d,取離心后的發酵液上清液測定排油圈直徑及表面張力,確定菌株XH-2的最佳接種量。
1.2.5鹽度對菌株產生物表面活性劑的影響
按4%接種量接種菌株XH-2于添加不同濃度氯化鈉的優化后的培養基中,在30℃、160r·min-1條件下搖瓶發酵2d,取離心后的發酵液上清液測定排油圈直徑及表面張力,確定菌株XH-2發酵培養基的最適鹽度。
1.2.6初始pH值對菌株產生物表面活性劑的影響
用1mol·L-1HCl溶液或1mol·L-1NaOH溶液調節優化后的培養基,使其初始pH值分別為5.0、6.0、7.0、8.0、9.0、10.0,在30℃、160r·min-1條件下搖瓶發酵2d,取離心后的發酵液上清液測定排油圈直徑及表面張力,確定菌株XH-2發酵培養基的最適初始pH值。